Insights from the BES Communicating Science Meeting

Issue: 
Network News Fall 2011, Vol. 24 No. 1
Section:
Site News

Common strategies for effective communication of science

This past April the Baltimore Ecosystem Study LTER held a "Communicating Science " meeting led by Dr. Chris Swan of the University of Maryland, Baltimore County and BES PI, Steward Pickett. The meeting was designed to help scientists improve their ability to communicate the outcomes of our science with other members of BES and with the larger world. The following is a detailed article on the meeting by Dr Pickett.

The meeting drew on experts in journalism, policy, the use of video, science writing for the public, effective use of slides, and writing scientific papers and proposals. Unfortunately, our expert on photography was ill and was unable to attend. However, advice from other sources on photography is available, as noted below.

A brief way to summarize the insights of the meeting is found in Table 1. It suggests seven general strategies that are relevant to each of the communication channels explored in the meeting. Only one example is inserted in each cell of the table, but many more were presented and discussed in the meeting. Notice that the strategies are relevant to all communication channels and audiences.

Communicating Effectively with Reporters.

Tim Wheeler, a veteran environmental reporter at the Baltimore Sun, shared his advice for interacting with journalists. He advised breaking down a story to its simplest form. Talk as you would to a non-scientist friend, and keep in mind that the reading level of a 12 year old is the target. This is not because people are not smart, but because they do not have a sophisticated background in science. It is crucial to keep in mind the question, "What’s the point?" Scientists tend to pay too much attention to the qualifiers and the details and forget to answer this question.

Be patient and persistent in dealing with reporters. Remember that they have a lot on their plates. Also be aware that the best stories are those that develop over time. It helps to provide leads before the time arrives for a press release.

When you present your work, remember to think visually. Be prepared to share good video or photography to illustrate the story. Be sure that you have arranged access to photography, or are available for photography and are ready to provide access to research sites or laboratories for illustration or context.

If you depend on a press release to spread the word, read the press release before it goes out and be sure it is accurate and clear. Backtracking and correcting press releases will put you and your work in a bad light. Be careful that press releases don’t go beyond the science in suggesting policy relevance. Be sure you’re in town when the press release goes out. It’s bad to have your press office have to say, he/she is out of town and isn’t available for comment or photography. Coordinate with your press office to avoid such lapses.

Be prepared to contact more than one media organization. Pick your best shots, but do not be afraid to put out a wide net. These days, the electronic media provide powerful connections. So consider interacting with bloggers and podcasters. Add such journalists to your contacts list and invite them to your scientific meetings. If you don’t have a press office to help with this, there is nothing wrong with reaching out directly.

Specialized science journalists, such as Wheeler at the Sun (http://www.thenation.com/article/unpopular-science), are becoming a rarity. They deserve our support and cooperation as they are among the best prepared and most experienced translators of the scientific process and its outcomes to the public. Subscribe to publications that have such people on their staff.
Guides and manuals are available on communicating with the public. Here are some good recent ones:

Nancy Baron (2010). Escape from the Ivory Tower: A Guide to Making Your Science Matter. Published by Island Press, Washington, DC.

Cornelia Dean (2009). Am I Making Myself Clear?: A Scientist’s Guide to Talking to the Public. Harvard University Press.

Warner, J. S., G. M. Lovett, and J. Cadwallader. 1991. Scientists and journalists: a primer for scientists who talk to reporters. Bulletin of the Ecological Society of America. Volume 72, number 2, pages 116-118.

Communicating for Policy

The process of communicating with policy makers was covered by Julie Palakovich-Carr, a Senior Policy Associate with the American Institute of Biological Sciences (AIBS). She holds a degree in biology, and followed that up with Senate staff experience. AIBS (http://www.aibs.org/public-policy/) is one of the foremost organizations engaged in translating science into the policy arena.

Who are important policy makers? Congressional and senatorial staff are important. They are the ones who do the research and often draft legislation. University administrators are also important policy makers. Engaging the policy process improves public awareness, and gives researchers a chance to share our passion for science and the benefits it can bring to the public discourse. An important outcome of effective communication of the insights and knowledge that science generates is to help sustain and improve investments in science.

In interacting with policy makers, scientists occupy a unique position. They are demonstrably respected and held to be honest brokers. They provide tools, such as data and models, that are useful to decision makers. Furthermore, policy makers commonly express a desire to hear from scientists. However, very few policy makers are trained as scientists, so it is scientists who need to meet the needs of policy makers.

To engage policy makers, scientists will need to employ a different paradigm for communication than they use within science. In science, the focus tends to be on "how" something is known. But for policy relevance, the focus should be on why rather than how. In other words, the big picture implications are key.

To communicate with policy makers framing the message appropriately is an important skill. Frames that often engage policy makers are economic growth and jobs, education and training of a new generation, energy independence, national security, human health, and global competitiveness. A framing issue particularly relevant to Baltimore might include Chesapeake Bay recovery. What frames might be used require scientists to know the policy audience to be addressed. So, preparation with a clear understanding of the mindset of the intended audience is crucial. Which issues do they support or eschew?

There are some useful tools for helping scientists to formulate their message. One common one is the communications triangle, cast as an equilateral figure. The main message is placed in the center of the triangle and cast as a complete sentence. An action verb and active voice are helpful. The three points of the triangle are the talking points, along with concrete support. To construct such a triangle, it is a good idea to brainstorm many possible talking points and potential supporting points before deciding on the three main points and the most compelling supporting points for the audience. The sides of the triangle represent the expected transitions between the three points.

It is important to prepare for meetings or interviews with policy makers. Scientists should anticipate the policy questions about their research. Furthermore, they should anticipate the arguments that opponents might make. These might include costs of implementation, unknowns, or controversies. Scientists should also be prepared to "bridge" from hostile or problematic questions back to their talking points and support.

To summarize effective communication with policy makers: Be succinct; stay on message; recall that repetition is key to being heard; approach questions with respect and bring focus back to your main points if the questions wander; be conversational and human; offer short anecdotes and facts to illustrate; avoid jargon and acronyms. In other words, explain as you would to a bright but beginning student. Speak slowly, and be respectful, positive, and attentive. If a question arises that is outside your expertise, offer to contact someone who knows about that area. Clarify what is your opinion versus that of your organization.
Things to avoid are overload with information and technical papers. A short one page "leave behind" is better. Don’t lecture. Do not make unrealistic demands or tell them how to do their job. Do not suggest a program to increase funding for your project or profession. Above all don’t take attacks personally or become partisan.

Additional advice was given on meeting structure and courteous treatment of policy makers’ time. Offer to help in the future if needed. Follow up after the meeting if you promised additional information, and a written thank you summarizing the main points is a good idea.

Several scientific societies offer ways to get involved with communicating with policy makers. AIBS is one of the leading ones. AIBS has a legislative action center available on its website (www.aibs.org) that alerts researchers to actions where their knowledge may be helpful. Also relevant to the specialties in BES LTER is the Ecological Society of America (www.esa.org). These organizations deserve our support and participation. They organize Congressional visit days, maintain data bases of experts, and facilitate testimony on scientific issues. University or agency government relationships offices can also be helpful.

Photography for Communicating Science

Our photography expert, Molly Mehling, was unable to attend. However advice for using photography as a communication tool has been summarized in a number of places. Mehling’s website (http://web.me.com/mollymehling/mollymehling/home.html) contains many excellent examples. The Ecological Society of America (ESA) has also posted advice on the use of photography on its website (http://www.esa.org/esablog/ecologist-2/ecology-education/taking-a-shot-at-photographing-science-and-nature/). ESA’s Student Section organizes an Eco-Arts Festival at each annual meeting, chaired by Molly Steinwald (http://web.me.com/mollysteinwald/mollysteinwald/main.html), who is also a photographer.

Members of BES are encouraged to share photographs of their research activities and the contexts of their research at (http://besdirector.blogspot.com/2011/01/bes-photo-album-now-publically.html). Please provide an informative caption, and be aware that posting on the BES Picasa website constitutes a grant of permission to use the photographs for non-commercial, academic and educational purposes both within BES and in the larger community. Indicate in the caption how you want the photo to be credited.

Video for Ecology

Brian McGrath is an architect who uses sophisticated visual modeling techniques in his practice and teaching. A specialist in urban design, he uses film theory and video techniques extensively in his studio mentoring at Parsons The New School for Design (http://www.newschool.edu/parsons/ ) and in research for his own design firm, Urban Interface, LLC (http://www.urban-interface.com/). In 2007 he published, with Jean Gardner, Cinemetrics: Architectural Drawing Today. This is the first book based on the understanding of how digital imaging differs from the pencil drawing traditionally used in architecture and urban design. It uses theory of imagery developed in cinema. This approach to visualization is especially relevant to ecological systems due to their dynamism over time, their spatial heterogeneity, and the spatial fluxes they support. A patch dynamics perspective resonates strongly with a cinemetric approach to representation.

Cinemetrics captures information on changing phenomena. It is most effective when it represents different spatial scales in different "shots." Cinemetrics can complements the fine scale, single site modeling so common in both ecology and urban design, for example, to permit understanding the interaction of different scales in ecological systems. The basic philosophy of cinemetrics is of a sensory-motor system, which is familiar to ecologists who appreciate the perspective that organisms use in interacting with their environment. Organisms perceive their environment and react or act as a consequence. Cinema is an extension of this same perspective, and effective use of video requires understanding of this fact. Video in urban ecology and urban design captures the interaction of people and environment.

McGrath illustrated the theory of cinemetrics using clips from groundbreaking movies of the past. What happens when you keep a video camera still? He cautioned that there is too much motion of cameras now that hand held devices are in almost everyone’s pocket. Lack of focus and a sense of dizziness can result in the viewers. Keeping the view still allows us to see the matter in flux. That, after all, is a key aspect of ecosystem science. The illustration of this principle was Yasujiro Ozu’s "Early Spring" (Tokyo 1956). The clips showed the power of static framing by keeping the camera still and allowing important motion within the frame. The framing was like a photographic composition to my eye, but gave meaning and context to the motion within it. McGrath invited the audience to notice such key aspects as the angle of framing and the distance to the subject.

Cinemetric information is transferred through a series of images over time -- a timeline. Each scene has enough duration so people understand what’s happening. The timeline presents different kinds of images that generate different understanding or feelings about the scene.

  1. Perception image. This kind of shot introduces the environment in which you are working. Perception images place the camera at a distance so that a sense of the overall environment results. In BES the sites where we work offer different perceptions of the city. Perception shots can be relatively short, on the order of 10 seconds
  2. Affection image. These are the images that generate an emotional impact concerning the subject. They are accomplished through close-ups, and invite the viewer into an intimate relationship with the scene. Affection images lead to an understanding of an intimate relationship. Since relationships are the core of socio-ecological research, such shots must be a part of our videographic communication.
  3. Impulse image. Such images show a stimulus or an event that can generate a reaction in the actors. There can be different reactions by different agents in the scene. These scenes explain the motivation for actions that may occur immediately or later in the sequence.
  4. Action image. These images show the responses to the impulse. In the clips shown, the actions were beautiful motions. McGrath encouraged us to think about our experiments and measurement activities as action images, and to find beauty in them. Action images are medium distance shots. It is important to frame the researchers’ bodies in these shots. Perform to the camera: face the camera and show the action. Science is a process -- an action -- and the human body is an action agent. This advice works as well for still photography as it does for video. Personally, I have seen too many bad photographs of researchers seen from the rear, bending over a plot, obscuring both their faces and what they are doing.

In summarizing the use of the fixed camera, McGrath emphasized that this style of cinema is a tool for understanding environment and agency within that environment. It involves a sensory-motor schema consisting of perception, affection, impulse, and action images. It places the scene of action in a larger context. In essence it is a scaling up and introducing complexity. These ideas resonate strongly with how social scientists and ecologists organize their research and models.

A second major strategy introduced was moving the camera. The example clips came from Jean Luc Godard’s "Contempt" (Rome 1963). McGrath cautioned that even though the camera is moving, it shouldn’t be jerky and random. The lesson learned from this style of film making is to shoot any instance, whatever it is. Don’t worry about whether it is a comedy or a drama. Don’t worry about being a filmmaker. Just be a scientist. The point is to capture what you are doing. Possible examples in BES would be moving the camera to show -- slowly -- the topography or the architecture of a place where we work.

Godard has slow pans from a single point. In "Contempt" he shows a couple avoiding one another as they move about their apartment. The film falls in love with the ordinary. Godard employed a continuously moving camera encompassing everything in one scene. There were no cuts from scene to scene. However, within this single scene there was slowness of change and presentation of different framings. The camera was essentially a "third person" in the apartment observing ordinary action that told a story.

The third model was Sensory Motor Breakdown, exemplified by John Cassavetes’ "Faces" (Los Angeles 1968). He was the first to use the hand held camera. This kind of cinematic strategy reveals thinking processes by representing thoughts and memories. The scene looks very spontaneous and dynamic, but in reality it was carefully scripted. If you have a hand held camera, you have to script something. The scene of anything whatever works with a stable camera. The scene can represent spontaneous or impulsive motion, but it actually needs to be highly scripted. The camera always anticipates the actor, rather than following the actor. The message for employing this third model is to try to get the components of the scenario from the first theory -- perception, affection, impulse, action -- all incorporated.

A powerful result of video is the ability to assemble time images. In a long-term research program getting at history is an important activity. Histories or time series can follow a single agent through different, discontinuous scenes. Alternatively, as in Citizen Kane, history can be assembled via interviews back in time from a present event. Such interviews can interrogate the biophysical features of the human ecosystem as well as living persons and the archival record.

McGrath summed up his advice, for both video and still photography: Recognize three techniques-- the stationary camera, the use of a medium long shot to represent infrastructure, and moving cameras to capture interconnections of actors in space. This last approach is especially appropriate for exposing social relationships.

Writing for the Public

Rebecca Wolf, freelance science writer and editor, principal of More Than Words in Odenton, MD, shared with us the fruits of her long experience. Wolf has an urban and metropolitan studies background. She began her professional career as a medical writer. The topics were challenging to understand and translate. Writing for the public is one of the most important tasks we as scientists have. Writing for the public is potent if the piece reflects the writer as a person and is clear and concise. But it is hard work and it takes time. The writers who write about their craft are unanimous in the need to write and rewrite.

Scientists have advantages in communicating their work to the public. First, we can tell the stories from experience. Second, the complex process of science can be presented in a step-by-step fashion. The big disadvantage is that scientists speak "science-ese". We need to translate science stories into common, everyday English. The best assumption about a public audience is that they know nothing about your topic, and they haven’t had science since middle school. They may be smart and curious, but they don’t know the special terms. It is also safest to assume they are busy -- they have many other things to read and do. One strategy to discover how to communicate with the public is to engage people in communities. In other words, actually talk to people and discover their interests and their language.

The stage for good writing for the public is clear thinking. Articulating the purpose or the message is key to successfully conveying science to the public. Once the main message is determined, it is possible to decide what information to muster, what emotions can be engaged, and what support to bring to bear. This provides the basics of the structure you will use. Then, simply tell about it. It helps to envision the relationship of your audience to the project you are describing. How does your project affect them?

Keeping the reader reading is the big job once you have decided on the message and its structure. There are some simple things to keep in mind: Do not use abbreviations and acronyms; define scientific terms and concepts; define parenthetically by setting set off in commas; explain the project within context; explain the concept in simple terms; weave any necessary larger scientific concepts into the story step-by-step rather than introducing them as abstractions right away.

As an example Wolf’s article on the research of Bob Ulanowicz was analyzed. The audience was volunteers at the Chesapeake Biological Lab. The article started with a poetic quote from Muir. Then it worked through some of Ulanowicz’s work framed using the engaging phrase, "web of life within an ecosystem." Scientific details were incorporated in context within the narrative. It emphasized the human side of the work, presenting Ulanowicz as a person, and highlighted the understandable bits of a complex story.

There are several principles that can be drawn from Wolf’s experience as a writer and editor: the most important is conciseness. Clutter is the enemy. Jargon and wordiness sap energy and make a narrative hard to follow. Redundant modifiers are a common flaw that needs to be deleted from public writing. Likewise, qualifiers can muddy the flow and make readers feel overwhelmed. Long phrases are a problem to overcome.

An example of good writing for the public is John McQuaid’s "Mining the Mountains" in Smithsonian Magazine, January 2009. The article showed the effect of mining by mountaintop removal on a town and its inhabitants. He explained the concept of aquatic food webs and their link with the forest through accessible details. The scientist took the writer out to the field to exemplify the components of the story. In this way, the concept was built from concrete cases in the field. Then the knock-on effects of mountaintop removal could be related to something that the readers had come to care about. The article didn’t start with the problem of stream obliteration or the abstract concept of food webs.

Wolf summarized her points this way:

  • Think about audience
  • Hook the audience in the first paragraph
  • Structure the article for understanding
  • Cut jargon and clutter
  • Paint a picture
  • Be yourself when you write -- the first person is ok
  • Have someone unfamiliar with your subject read it for clarity and readability.

Recommended sources:

William Zinsser, 2006. On Writing Well: 30th Anniversary Edition -- The Classic Guide to Writing Nonfiction. Harper Collins, New York.
W. Strunk and E.B. White, 2009. Elements of Style: 50th Anniversary Edition. Pearson Longman, New York.

Writing For Scientists

I presented recommendations, strategies, and rules for clear writing within science. Not surprisingly, many of the points echo ideas presented by Rebecca Wolf. My ideas are summarized in a more complete essay available on the BES website (http://beslter.org/internal/frame8-stuff.html). It is located under Guides and Templates. Members of BES can access that with a password obtained from our Information Manager, Jonathan Walsh. I’ll just abstract some key points here.

The most important idea in scientific writing is to respect the audience. Don’t make them work to figure out what you are trying to say, or what the structure of your story is. Your job as a scientific writer is to make it as easy as possible for people to understand your message. Scientific narratives are effective if they start from a stated focus, move through a clear structure of support, and bring the story to fruition. In scientific writing, the author should lay out the problem or the point very early in the piece rather than letting the conclusion emerge gradually through the narrative. As a result, scientific writing is often described as "front loaded." The organization and the order of ideas should be clear throughout any scientific narrative. Simple, straightforward sentences are better than complex, long, and convoluted ones. Exact or plain words are better than vague or fancy words. If a fancy word is required for the flow, use it. But be sure every word plays a role in presenting your case.

Strategies for writing in science echo those in general writing. The first thing to consider in preparing to write a piece is to clarify for yourself who the audience is. Is it the few people who are experts in your specific field? Is it ecologists in general? Is it scientists in other disciplines? One background strategy is the habit of thinking about writing. It is a good idea to read good writers in science and in other areas of life. What makes their writing good and compelling? Having a clear roadmap for yourself, in the form of an outline or a bulleted list of points, is key to moving forward in the writing process. Avoid the temptation to edit while you write the first draft. For some short pieces this is possible, but getting engaged in detailed cleaning up while the words are first being introduced to the paper can be distracting. Try always to leave enough time for your piece to rest before editing. You will be able to see the flaws in organization, support, and style after a time away from the draft. Even with a good sense of writing, there is always the need to have fresh eyes read your piece. A trusted friend outside your specialty can provide that service.

Some specific rules apply to the things I like to read. These are justified in the essay linked above.

  1. More sentences, fewer words
  2. Do not use full justification
  3. Avoid substantive parentheticals
  4. Avoid long series of modifying nouns

Some of my recommended sources are:

  • Lamott, Ann. 1994. Some Instructions on Writing and Life. Pantheon Books, New York.
  • McMurry, D.A. Sentence-Style Problems. http://www.io.com/~hcexres/style/ Accessed 29 April 2010.
  • Zinsser, William. 2006. On Writing Well, 30th Anniversary Edition: The Classic Guide to Writing Nonfiction. Harper Collins, New York.
  • "Zinsser on Friday" at the American Scholar. http://www.theamericanscholar.org/zinsser/

Making Effective Slides

Mary Cadenasso, Associate Professor of Ecology at the University of California, Davis, is known for the clarity of her slide presentations. She has been engaged in mentoring undergraduate and graduate students for more than a decade, and has thought about how to introduce the strategy of effective presentations to diverse audiences. Here are some brief rules I extracted from her presentation. Her presentation is more nuanced and was illustrated very compellingly.

Here is the main message: Don’t put too much information on each slide. This applies to graphics and text. The distance between you and the screen while you make slides on your laptop is proportionally closer than even the closest viewer in a large room. Slides that have four or five lines of text are the easiest to read in medium to large size rooms.

If you feel many points have to be mentioned on one slide, consider using short phrases to introduce them, and flesh out each point on a separate slide later.

Short phrases are better than complete sentences. Don’t construct slides so that people are distracted by reading while you are saying something else. On the other hand, simply reading detailed text that is on the slides is condescending to the audience and misses the opportunity to engage them as a person rather than a robot. The slides should reinforce, not compete with, what you are saying. This is true of graphical content as well. Default clip art provided with presentation software is hardly ever useful for reinforcing your message.

If you find that one or two slides are unavoidably complex, use your pointer to guide people through the slide. On graphs, point out the axes, the units, and the trends you want people to follow. People, like cats, will go where you point with the laser. Do not wave the pointer wildly about, or trace the path of a tornado funnel unless you want to make people ill.

Avoid the problems of dense slides by using simple animations to build them up. But avoid using animations that are complicated or silly. Again, don’t make people ill.

Watch out for color schemes that make text or graphics hard to read. Avoid low contrast between text and backgrounds, such as yellow on white. Avoid using red and green as discriminating colors due to the commonness of red-green color blindness. Also recognize that complicated color schemes tend to require ideal projection conditions, such as a new projector bulb and a room that can be darkened well but not too much. Colors typically show up differently when projected than they do on the source computer screen. Consider that when choosing color schemes. Black on white is the safest color scheme for general slides.

Practice your presentation so that you don’t run out of time. Given that a common fault in slide presentations is that the author tries to say too much in the allotted time, practice alerts you to the need to shorten and focus the presentation. Practice also ensures that you are comfortable with the transitions between slides, and you remember what slide is coming next. Practice using the pointer, and practice doing without verbal tics such as "ah" and "uhm." Practice looking at the audience and projecting your voice.

Summary

There were surprising commonalties among all the presentations. Here are the features of good scientific communication that apply to oral, visual, video, and written encounters.

  • Have a clear point for the piece or meeting.
  • Focus on a simple point, and do not present too much detail.
  • Respect your audience; they have limited time and many activities competing for their attention. Make your presentation, in whatever medium, as clear and easy to follow as possible.
  • Plan for the worst. Power outages, a room with bad acoustics and broken shades, having less time than you were promised, or encountering a hostile interviewer are all real happenings.
  • Control the technology, not be controlled by it. PowerPoint can make people dizzy; Word claims to check our grammar.
  • Prepare ahead of time. Leave enough time for letting early drafts rest and for your own and friendly editing to provide a fresh look.
  • Revise based on input from friendly reviewers or practice with mock meetings or interviews.